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Conditions are derived under which either kinetic, Planck, or Rosseland flow pat- 

terns obtain at the center of a strong explosion. The method of matching asymp- 

totic expansions for fairly considerable time parameters is used in the approxi- 
mation of weak effect of radiation on the flow of a gray radiating-absorbing gas. 

An analytic solution is obtained for the Planck mode. Errors of the first approxi- 
mations are analyzed. The flow of a viscous heat-conducting gas at a strong ex- 

plosion and considerable time parameter was analyzed in [ 11. Here a similar 

problem is considered in the case of an inviscid radiating-absorbing gas. 

I. A strong explosion in a radiating nondissipating absorbing inviscid gray gas is con- 

sidered. Dependence of the volume absorption coefficient x on pressure p and density 

p is assumed to follow the power law x = cp”pP. The gas is assumed to be perfect and 
in local thermodynamic equilibrium with uniform initial density distribution p = cp. 

The problem contains constants E,,, c, cp and a 1 o R-4, where E, is the energy 
released at the explosion, and (3 and K are the Stefan-Boltzman and the gas constants, 

respectively [2]. The dimensions of these constants are , respectively, MLd-lT”, ML-3, 
ML-8T5 and M-a-PTzaLa+-3P-1 where d = 1,.x, 3 ,respectively, for the plane, cylin- 

drical, and spherical symmetry, and M, L and T denote mass, length, and time, res- 

pectively. As the units of length and time we select 

I” = az/(5d)C,7/(5d),+d, to = a(d+‘-W(5d)C-(d+7) l(5d)El/ d 
P 

and define the dimensionless velocity 8, pressure p’, density p’, enthalpy h”, radiation 
intensity 1” and the Lagrangian coordinate $” as follows: 

v = (cp / a)‘W, p = cP(cP / a)‘l~p’, p = cp p” 

h = (cP / a)‘&‘, I =I a (cP / a)‘/6 I”, 9 = cP (Z”)d $” 

The Euler equation and the equations of state. continuity, particle trajectory, energy, and 

radiation transfer in that notation are 

ah ap ---= 
p at at 

+ [ +$ (1 - pL2) - (3 - d) @] ‘; = z,,~“pfi (-$ 

r0 = CC7(a-‘/d)/5+Pa--2(~-lld)/5~1/d 
P 
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where r is the distance from the plane (d .- I), from the axis (d 2) , or from the 

center (d = 3) of symmetry, and y is the adiabatic exponent, The radiation intensity 
1 depends on coordinate r, time t , and the unit vector Q of the direction of photon 

flight, The latter dependence can be defined in the plane and the spherical cases by the 
cosine of angle ,U between the direction of the r-axis and vector ft. In the case of 
cylindrical symmet~ it is necessary to supplement it by the dependence on the cosine 

of angle pi between Sz and the axis of symmetry. The quantity Z, is the characteristic 

optical thickness of the problem,and energy 1 is proportional to the exnlosion energy 
E, [ 11. The superscript ’ is omitted throughout. 

2. Let us consider the solution of problem (1.1) for a fairly great time parameter, 
whenthe effect of radiation on the motion of the medium can be considered weak eve- 

rywhere, except at the small neighborhood of the center. The asymptotic behavior of a 

nonradiating gas flow is defined in that Reighborh~ by [l] 

where constants a,, YOO, .. q and H,,, are taken from the exact solution of L. I, Sedov. 

We introduce the inner variable 

N :z- &‘aa,n18 z__ 9 ts-adk (2.21 

The quantity 6 is determined below with the use of the condition of equality of convec- 

tive and radiation fluxes in the neighb~h~ of the center. It must satisfy the following 

two inequalities : 
0 < 6 < 2 d / (2 + 4. (2.3) 

The left-hand inequality implies that in the course of time the inhomogeneity of solu- 
tion becomes localized in the neighborhood of the center, while the right-hand one is 

equivalent to stipulation for the inhomogenei~ region in La~angian coordinates to wi- 

den with time because of radiation. 

Ir follows from (2.1) and (2.2) that in the inner region it is necessary to seek a solu- 
tion of the asymptotic form 

r = ~z~~(~-~~~~ (N), U = P”“Ui (N) (2.4) 

p = t-“kpi (iv), p = t+pi (iv) 

h = t-““+“iq&; (N), I = t-*k+4S’vi (iv, 52) 

At the center 
&(O) ~- V&l) 0, I& Q) = I&l,- 9) (2.5) 

The requirement for matching the inner and outer solutions together with (2.1) and(2.4) 
imply that 
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The first ap~oximatio~ of Eqs. (1.1) in variables (2.2) and (2.4) yields for the neigh- 

borhood center the asymptotic equations 

where the prime denotes derivatives with respect to N. 

The equation of motion (2.7) implies that in the neighborho~ of the center the flow 

is isobaric with the pressure determined by the matching condition (2.6) 

8ao2 

pi= (z+d)2(y+l) 
P O” (2.12) 

The availabili~ of the integral (2.12) reduces the problem to the joint solution of the 

equations of energy (2.10) and of transfer (2.11) for functions Pi and Ii. 
If the right-hand inequality (2.3) is not satisfied, the meaning of terms in the right- 

hand part of (2.10) which define the absorption and emission of heat is reversed, which 
is physically irrelevant, 

3. The equation of transfer (2.11) implies that for considerable values of time the 
optical thidmess of the ingomogenei~ for 

6, = 0 (3.X) 

is of the order of z,. 
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Fig. 1 

This is the kinetic mode of radiation transfer, The right-hand part of the equation of 

energy remains of the form (2.10). The magnitude of the inhomogeneity region 

(j=+2d l/d---a 

2fd ’ P+(r--J/d (3.2) 

determined by (3.1) must satisfy the additional condition 

6E = 0 (3.3) 

which follows from the equation of energy (2.10). Equality (3.3) together with (3.2) 

determine in space a fi y surface K which is a hyperbolic paraboloid 

2 a (? - 1) d + 8 a d2 $- 5 fi d2 i- (5 d - 2) (Y - 1) - 8 d y 0 

The inequalities (2.3) which bound hl, impose on the adiabatic exponent the addition- 
al restriction 

Y < Ymax z 2 (4 d - 1) / (5 d - 2) (3.4) 

The part of surface K bounded by the plane y = 1 and the straight line L of inter- 
section of K with the plane y = y max is shown in Fig. 1 for d = 3. If 

6, < 0 (3.5) 

the center optical thickness is small, and the emanation of radiant heat takes place in 
the Planck mode of volume luminescence denoted as the P-mode. The first term in the 
right-hand part of Eq. (2.10) which defines absorption is small in comparison with the 
second which defines photon emission. 
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The quantity 6 = gp determined by condition (3.3) is 

Fp=&+(~-+ (3.6) 

In the P -mode the equation of energy (2.10) is separated from the equation of transfer 

(2.11). With allowance for (3.6) it is of the form 

Equation (3.7) together with condition (2.6) of merging for pi has function 

as its solution if 
b=3FJ=4 

(3.8) 

(3.9) 

Inequalities (2.3) (3.5) and (3.9) define in the ( a p y )-space the region of the P - 
mode. It is bounded from below by surface K and from above by the hyperbolic para- 
boloid p 

(3.7) 

Surface 1’ intersects surface ,K along the straight lines L and Lp with p = 4 and 

CL = - (5 d - 2) / (2 d). If 
6, > 0 (3.10) 

the center optical thickness is considerable and the transfer of radiation energy takes 

place in the Rosseland mode of radiation thermal conductivity, denoted the R-mode. 

The equation of energy (2.10) is again separated from the equation of transfer 

(3.11) 

The quantity 

is determined in accordance with (3.11) by the equation 6~ - 2 6, = 0. Radiation 
intensity in the R-mode coincides in the first approximation with its equilibriumvalue, 

hence at the center f&‘(O) = 0 
(3.13) 

We introduce function 2 = yid. The equation of continuity (2.8) implies that 

pi = d/z’ (3.14) 

Substituting (3.14) into (3.11) and integrating once with allowance for (3.13) we obtain 
equation 

Boundary conditions for (3.15) are determined by (2.6) and the condition for the geo- 
metric coordinate to be zero at the center 
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N-CO: z -+ a,dyood (daod N)W)'(Y) (3.16) 

N=O:z -0 

The behavior of function z defined by (3.16) is governed at considerable fl by the last 

two terms of Eq. (3.15). Hence for N -+ 00 it is necessary to specify that the first term 

of Eq. (3.15) on the asymptotics (3.16) must be small. This is possible for 

13 > (jn car - 4-2 (y - 1) ,i d (3.17) 

Inequalities (2.3), (3.1O),and (3.17) define the R -mode region in Fig. 1. It is bounded 

from above by surface K and from below by the hyperbolic paraboloid R 

Surface R intersects surface K along straight lines L and Ln with p = /3n and 

a = (2 + 5d)/(2 d). 
For p = - 2 (3.15) coincides with the equation derived in [l] in the analysis of a 

similar tlow in a nonradiating gas whose viscosity and thermal conductivity are linearly 
dependent on temperature. 

We point out once again that the plane, Planck and Rosseland modes obtain only at 

fairly small values of the adiabatic exponent defined by (3.4). 

4. Let us indicate the accuracy of derived solutions. The error of the external solu- 
tion can be estimated by two methods. In the first method we estimate the accuracy 

with which Eqs. (1.1) are satisfied in the Sedov solution. In the second method we esti- 

mate the accuracy of gas energy conservation in the perturbed volume, except in the 

neighborhood of the center. The energy balance must be taken into consideration, since 
the external solution used here satisfies the law of total energy conservation [ 11. 

For considerable time parameters,the optical thickness zOpapP of the external flow 

is proportional to t-aadl @+d). For a > 0 the radiation transfer in the external region 

takes place in the P-mode, for z = 0 in the K-mode, and for CC < 0 in the R -mode. 
In the case of the first two modes the ratio of the right-hand part of the equation of 

energy (1.1) to its left-hand part is of the order of 0 (tmxK), while in the Rosseland 

mode it is of the order of 0 (t-“n), where 

The computation error of the energy integral is of the order of 0 (t-"(Y-l)/u), [I J.. 
It can be seen from Fig. 1 that for u > 0 any of the three modes is possible in the 

neighborhood of the center. Hence the error of the external solution for a > 0 is of 
the order of 0 (t-'K), where 5~ = ml11 [XK, 6 (Y - 1) / Yl , and 6 is defined by one 
of formulas (3.2), (3.6), or (3.12), depending on the pattern of flow in the neighborhood 
of the center. For a ( 0 the corresponding error is of the order of 0 (t-‘n), where 

cn = min JxRt 6 (y - 1) / y], and 6 is equal aK, g, or 6n, since for CL ( Cl any 
of the three modes is possible at the center. 

Let us now estimate the error of determination of flow in the neighborhood of the 
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center. Since the exacmess of asymptotic formulas (2.1) is of the order of 0 (n’i), 
where &_i = (y - 1) / (y d) the accuracy of formulas (2.4) is of the order of o(rsri). 

The Euler equation (2.7) is derived from (I. 1) and (2.4) with an accuracy of the order 

of 0 (fScE), where 5~ = (2~ + d - 2) / (y d). There are no further simplifications 

in the kinetic mode. Hence, Eqs. (2.10) and (2.11) define the hf -mode in the neighbor- 

hood of the center with an accuracy of the order of 0 (t-“K), where hK = min (6,<,, 

I;E8Kb 

In the Planck-mode Eq. (2.10) is approximated by (3.7) with an accuracy of the order 
of 0 (tS5 In t-s’). Hence solution (3.8) defines such flow with an accuracy of the order 

of 
C, {min [t-‘Pii, t-‘PCE, tb(&P) In t-W”P) 1) 

The reduction of (2.10) to (3.11) is achieved in the K-mode with an error of the 

order of 0 (t-“s~). The resulting error of determination of such flows is of the order of 

0 (t-“R), LB = min [6n5i, 6*&r, 2 &(6n)l 
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We propose a method of obtaining exact solutions of certain boundary value prob- 

lems for hyperbolic systems of quasilinear equations of first order with two un- 
knowns. The method utilizes special series. As an example, we solve the prob- 

lem of motion of a plane, cylindrical or spherical piston in a gas with dis~ibuted 
density. 

2. Let us consider the following system of equations: 

(1.1) 

U = {Z&(X, t)}, A (Z, U) - {Uij(x, U)}, B t2, U) = ibijtZ, ‘11 

c (z, U) - {c&, U)}, i, i == 1, . . . . ttz 


